Microblog : A very long article Wikipedia article on the orientation of toilet paper [7 jun à 22:52] [R]

Mardi, 12 juillet 2016

Harmonie et Gamme

Catégories : [ Science ]

Les musiciens et les mathématiciens se sont cassés les dents pendant des milliers d'années sur la définition de la gamme, des notes, des intervalles et des accords. Ce qui suit est le résultat de mes refexions sur la raison dei ces difficultés.

Soit une note, appelée C1, de fréquence f. Lorsqu'on joue cette note sur un instrument, des harmoniques de fréquence 2 f, 3 f… sont produites en même temps. L'octave C2 (de fréquence 2 f) est donc naturellement en harmonie avec C1. Lorsqu'on joue en même temps C1 et C2 de même niveau sonore, les deux fréquences interfèrent et produisent un son de fréquence égal à la moyenne de C1 et C2, donc 3/2 f, que l'on appellera G1. Ce nouveau son est modulé par une fréquence perçue 2 f - f = f, trop élevée dans la pratique pour entendre le battement. L'intervalle de fréquence C1 – G1 est appelé une quinte juste.

De la même manière, lorsqu'on joue en même temps C1 et G1 de même niveau sonore, on obtient une interférence de fréquence égale à la moyenne des fréquences de C1 et G1, soit 5/4 f. On appelle cette nouvelle note E1. L'intervalle C1 – E1 est appelé une tierce majeure, et l'accord C1 – E1 – G1 est appelé accord majeur.

En théorie de la musique, on peut traverser toutes les notes de la gamme en partant de C1 et montant d'une quinte, puis en répétant l'opération. Ainsi, on passe de C1 à G1, puis en montant encore d'une quinte on passe de G1 à D2, puis A2, puis E3 et B3. Enfin, en montant d'une quinte depuis F0, on arrive à C1. On pourrait donc imaginer calculer les fréquences de D, F, A et B de cette manière:

  • En augmentant F0 (fréquence 2/3 f) d'une quinte (donc en multipliant par 3/2) on arrive bien à C1 (fréquence f) ; ceci donne une fréquence de 4/3 f pour F1.
  • G1 (3/2 f) augmenté d'une quinte (multiplié par 3/2) donne D2 (9/4 f), et donc D1, une octave plus bas, a une fréquence de 9/8 f.
  • D1 augmenté d'une quinte donne de la même manière A1 (27/16 f).
  • A1 augmenté d'une quinte donne E2 (81/32 f), donc E1 a une fréquence de 81/64 f.

Mais on a vu plus haut que E1 devait avoir une fréquence de 5/4 f (soit 80/64 f) pour être en harmonie avec C1 et G1 ! C'est donc là que l'édifice commence à s'écrouler : la tierce C1 – E1 n'a pas le même rapport de fréquences que la tierce C2 – E2 ; en d'autres termes, E2 n'est pas exactement une octave au dessus de E1 si on s'en tient à la définition « par quintes ». Les deux définitions de la tierce étant incompatibles, il a fallu trouver une solution.

La manière dont les fréquences des notes sont définies s'appelle le tempérament, et de nombreux tempéraments on été inventés au fil des siècles. La solution retenue depuis le XIXè siècle est le tempérament égal, où tous les demi-tons sont séparés d'un rapport de fréquence égal à 21/12. Ce tempérament donne des accords qui sont tous faux, mais suffisamment peu faux pour que ce ne soit pas gênant.

[ Posté le 12 juillet 2016 à 12:43 | pas de commentaire | ]

Adresse de trackback

https://weber.fi.eu.org/blog/Science/harmonie_et_gamme.trackback

Commentaires

Aucun commentaire

Ajouter un commentaire

Vous pouvez utiliser les balises HTML suivantes: <p>, <br>, <em> <strong>, <pre>. Les URLs commençant par http:// seront automatiquement transformées en liens hypertextes.

(optionnel)
(optionnel)


Sauver mon nom et mon URL/Email pour la prochaine fois

10 - 5 =