Microblog: A very long article Wikipedia article on the orientation of toilet paper [Jun 7th, 22:52] [R]

Monday, September 16th, 2019

Optique photo 5 : temps de pose

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Exposition et temps de pose

Du point de vue pratique, l'exposition d'une photo dépend du nombre d'ouverture du diaphragme, de la sensibilité du capteur et du temps de pose. On peut comprendre cette exposition comme la quantité de lumière nécessaire pour que chaque pixel du capteur CCD reçoive suffisamment de photons pour produire une valeur « raisonnable » de ce pixel. On a alors le choix d'exposer ces pixels à un flot de lumière important pendant un temps court, ou au contraire un flot de lumière plus faible pendant un temps plus long pour recevoir le même nombre de photons, et donc obtenir le même résultat.

Plus formellement, l'exposition lumineuse H est définie par H = Et, où E est l'éclairement lumineux c'est à dire le flot de lumière et t est le temps de pose.

optique_photo_1

En faisant l'hypothèse d'un système idéal d'une lentille mince parfaitement transparente uniformément éclairée par l'objet photographié, on peut définir l'éclairement lumineux comme E = Lπ / (4(N / (1 - f / l))2) où L est la luminance de l'objet, f est la distance focale de l'objectif, l est la distance de l'objet et N est le nombre d'ouverture du diaphragme. Dans le cas courant où la distance focale est négligeable par rapport à la distance à l'objet, on peut simplifier cette définition en E = Lπ / (4N2).

Par ailleurs, la sensibilité est définie par S = H0 / H où H0 est une valeur d'exposition de référence, constante. En considérant que la luminance de l'objet est elle aussi constante, on obtient la relation

St / N2 = 4H0 / (Lπ)

qui indique bien que si l'un des trois paramètres N, S ou t varie alors l'un au moins des deux autres paramètres doit varier pour que l'égalité soit toujours vérifiée.

Flou et temps de pose

Si le sujet ou l'appareil photo se déplacent pendant la prise de vue, on comprend aisément qu'un point de l'objet donne une image qui se déplace sur le capteur, qui enregistre alors plusieurs points contigus.

Parmi tous les mouvements possibles de l'appareil photo qui conduisent à un flou de bougé, un mouvement simple à modéliser est une rotation de l'appareil photo autour du centre optique O. On considère que durant la prise de vue, le point A s'est déplacé en B, et que le temps de pose est assez long pour que le capteur enregistre toutes les positions prises par ce point entre A' et B'. L'image du point, au lieu d'être un point, est alors un trait de longueur h'. On peut exprimer h' en fonction de θ

h' = tan(θ)lf/(l-f)

Lorsque la distance focale f est négligeable devant l et que θ est inférieur à 0.5 radians (soit 29°, ce qui fait que l'erreur d'approximation de tan(θ) est inférieure à 10%), on peut simplifier en

h' = fθ

En considérant que l'angle θ est le résultat d'une rotation de vitesse angulaire ω durant un temps t, c'est-à-dire θ = ωt on peut écrire

h' = fωt

En notant ε la hauteur d'un pixel et en reprenant l'hypothèse que le flou est invisible si la taille h' de la « tache » de flou est plus petite qu'un pixel, on peut écrire que le flou de bougé est invisible si

t < ε/(fω)

On retrouve ici l'approximation dite « de l'inverse de la focale », à savoir que pour éviter le flou de bouger,

« le temps de pose minimum a la même valeur numérique que l'inverse de la distance focale exprimée en millimètres. »

Cette approximation suppose que ε/ω = 1/1000 m·s·rad-1. On peut supposer que pour un photographe moyen, la vitesse ω de ses mouvements involontaires est constante, mais on voit que cette approximation dépend directement de la taille ε d'un pixel qui peut beaucoup varier d'un capteur à l'autre.

[ Posted on September 16th, 2019 at 21:22 | no comment | ]

Trackback Address

https://weber.fi.eu.org/blog/Science/optique_photo_5_temps_de_pose.trackback

Comments

No comment

Sunday, September 15th, 2019

Optique photo 4 : sensibilité

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Le bruit

Chaque pixel d'un capteur CCD d'appareil photo numérique est un transducteur qui transforme une quantité de lumière reçue Q en une différence de potentiel électrique u0 qui est proportionnelle à Q selon un facteur f :

u0 = fQ

Dans un situation idéale, une valeur donnée de Q devrait donner systématiquement la même valeur nominale u0. En réalité, à cause du bruit, des mesures répétées d'une même valeur d'exposition donneront des valeurs différentes de u

u = u0 + ε

où ε est une erreur de mesure aléatoire. Cela signifie que chaque mesure répétée de u aura une valeur différente de ε, mais aussi que deux pixels voisins qui sont exposés de la même manière donneront des valeurs de u différentes.

Si on considère qui le bruit est un bruit blanc (ce qui est probablement faux mais suffisamment similaire à la réalité pour être utile à cette explication), alors les valeurs de ε sont couramment proches de zéro (et donc u est proche de u0), mais ε peut parfois, plus rarement, être nettement plus grand que zéro et donc la valeur de u est nettement différente de u0.

La sensibilité d'un capteur numérique

Les valeurs typiques de u sont très petites et il est donc nécessaire de les amplifier avant de les numériser. Ainsi une valeur v de pixel (typiquement entre 0 pour la valeur la plus sombre et 255 pour la valeur la plus lumineuse) est obtenue en effectuant

v = Au si Au ≤ vmax
v = vmax si Au > vmax

où A est le facteur d'amplification. Comme la valeur de v ne peut dépasser vmax, on comprend que si l'amplification A choisie est trop élevé par rapport à u, l'intervalle de valeurs possibles pour un pixel n'est pas suffisant pour représenter la valeur correcte de ce pixel, et on arrive à la saturation.

En faisant varier A, on peut faire varier la « sensibilité » du capteur et obtenir des valeurs élevées de v (donc un pixel très lumineux) à partir d'une valeur faible de u (par exemple en photographiant dans une situation de faible luminosité).

Cependant, comme v contient aussi le bruit ε, ce dernier est amplifié de la même manière :

 v = Au0 + Aε

Ainsi, plus la « sensibilité » du capteur est élevée, c'est à dire plus le facteur d'amplification A est élevé, plus le bruit est élevé et devient perceptible pour l'observateur.

Par exemple pour une image d'un objet noir, on s'attend à ce que v soit proche de zéro pour tous les pixels même pour une grande valeur de A parce que u0 est justement proche de zéro. Mais il peut arriver que ε soit bien plus grand que u0, ce qui conduit à ce que la valeur v du pixel soit essentiellement égale à Aε. Ceci se traduit par des pixels brillants au milieu de pixels sombres, typiques du bruit des photos prises en faible lumière avec une sensibilité élevée.

Comparaison de capteurs

Dans des conditions d'éclairage uniforme dans l'espace et le temps d'une surface s pendant un temps t (le temps de pose d'une photo), on peut définir les grandeurs suivantes :

où Q est la quantité de lumière c'est à dire approximativement le nombre de photons qui arrivent sur la surface s. En combinant ces trois définitions, on obtient

Q = Hs

c'est à dire que la quantité de lumière qui arrive sur un pixel est proportionnelle à la surface de ce pixel. Autrement dit, à exposition H égale, un pixel plus grand reçoit une plus grande quantité de lumière qu'un pixel plus petit.

En reprenant définition de u0 plus haut, on a

u0 = fHs

et donc, en ignorant pour le moment le bruit ε on a

v = AfHs

Ainsi, pour obtenir la même valeur v avec deux capteurs (capteur 1 et capteur 2) dont les pixels ont respectivement des surfaces s1 et s2, on a besoin d'un facteur d'amplification A1 sur le capteur 1 et A2 sur le capteur 2 tels que

A2 = A1s1 / s2

On a vu plus haut que le bruit est amplifié. Cela se traduit par

A2ε = A1εs1 / s2

c'est à dire que le bruit dans l'image obtenue par le second capteur est s1 / s2 fois plus élevé que le bruit dans l'image obtenue par le premier capteur.

Qualitativement, cela signifie que pour obtenir deux photos exposées de manière identiques avec deux appareils différents, l'un muni d'un capteur à grands pixels et le second muni d'un appareil à petits pixels, celui dont les pixels sont petits a besoin d'un facteur d'amplification plus élevé et produit donc une image plus bruitée.

Sensibilité

La sensibilité est définie par S = H0 / H où H0 est une valeur d'exposition de référence.

Un photographe s'attend à ce que lorsqu'on prend la même photo avec deux appareils (dont les capteurs sont équivalents à l'exception de la taille des pixels, et donc de leur nombre), l'image obtenue est exposée de la même façon (en supposant que la distance focale, le nombre d'ouverture, le temps de pose et la sensibilité sont les mêmes). Une conséquence est que les facteurs d'amplification des deux appareils doivent être différents puisque les tailles des pixels sont différentes, et que l'image de l'appareil dont les pixels sont plus petits contiendra donc plus de bruit.

Réciproquement, si on cherche à produire avec les deux appareils des images contenant une quantité de bruit identique, il faut changer les paramètres d'exposition de l'appareil produisant le plus de bruit de sorte à

  • diminuer la sensibilité S d'un facteur s1 / s2 afin d'utiliser le même facteur d'amplification dans les deux appareils, et
  • augmenter l'exposition H d'un facteur s1 / s2 afin de compenser la diminution de la sensibilité.

On peut parvenir à ce dernier point en augmentant le temps de pose ou en augmentant la surface de la pupille du diaphragme d'un facteur s1 / s2.

Selon le modèle simplifié utilisé ici, à tailles de capteurs égales, un capteur de plus haute définition (donc comportant un plus grand nombre de pixels) produira donc des images contenant plus de bruit.

Si on décide de considérer qu'avec une exposition de référence Href la sensibilité Sref maximale d'un capteur de référence dont les pixels ont une surface sref représente une quantité de bruit de référence, on peut considérer qu'à quantité de bruit identique, un capteur de plus haute définition dont les pixels ont une surface s aura donc une « sensibilité équivalente » Seq plus faible nécessitant une exposition Heq. En effet Sref = H0 / Href et Heq = sref / sHref, donc

Seq = Srefs/sref

Il faut noter que la sensibilité équivalente, qui dépend de la surface des pixels, n'a rien à voir avec la focale équivalente qui dépend des dimensions du capteur et non de celles de ses pixels.

[ Posted on September 15th, 2019 at 17:22 | 1 comment | ]

Saturday, September 14th, 2019

Optique photo 3 : perspective

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Le grandissement

optique_photo_1

La hauteur h' de l'image d'un objet de hauteur h situé à une distance l d'un objectif de distance focale f est donnée par h' = hf / l. Le rapport des tailles entre l'objet et l'image s'appelle le grandissement γ, et en supposant que f est négligeable devant l, γ est défini par

γ = h' / h = f / l

Le grandissement dépend donc uniquement de la distance à l'objet et de la distance focale de l'objectif.

La perspective

On peut donner une valeur chiffrée à la perspective en comparant les tailles des images de deux objets de même taille mais situés à des distances différentes. En supposant que la profondeur de champ est suffisante pour que les images des deux objets soient nettes, on peut noter h'1 et h'2 les hauteurs de ces images et l1 et l2 les distances des objets, puis calculer le rapport h'1 / h'2

h'1 / h'2 = l2 / l1

On constate que le rapport des hauteurs des images dépend seulement du rapport des distances des deux objets. En particulier, il ne dépend pas de la distance focale de l'objectif (si cette dernière est négligeable devant les distances aux objets).

Une conséquence de ce constat est qu'un objectif à longue focale n'« écrase » pas davantage les perspectives qu'un objectif à courte focale (si on ignore les déformations sur les bords de l'image dûs aux courtes focale). Cette conclusion est cohérente avec le fait qu'un objectif à courte distance focale associée à un capteur de petite taille donnera la même image (avec la même perspective) qu'un objectif de plus longue distance focale associé à un capteur plus grand (lorsque le rapport des distance focales de ces deux objectifs est égal au crop factor des deux capteurs).

[ Posted on September 14th, 2019 at 14:25 | no comment | ]

Trackback Address

https://weber.fi.eu.org/blog/Science/optique_photo_3_perspective.trackback

Comments

No comment

Friday, September 13th, 2019

Optique photo 2 : profondeur de champ

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Le flou

optique_photo_2

Lorsque la mise au point d'un système optique (simplifié) a été effectuée, l'image d'un objet ponctuel A situé à une distance l de l'objectif est un point A'. La mise au point est cependant imparfaite pour un objet B situé à une distance L plus (ou moins) loin que l : les rayons lumineux convergent en B' au lieu de A', continuent leur course et vont s'étaler autour de A' dans une zone de largeur ε. Sur le capteur d'un appareil photo, l'image B' de B est donc une tache circulaire dont le diamètre ε dépend de L, de la distance de mise au point l, de la distance focale f de la lentille et du diamètre d de la pupille, c'est-à-dire le trou circulaire par lequel la lumière entre dans la lentille, délimitée par le diaphragme. On considère ici que la pupille est suffisamment grande pour négliger les effets dûs à la diffraction.

On considère que l'image d'un point est net lorsque l'observateur (humain, en général) est incapable de faire la différence entre un « vrai » point et une tache. Le diamètre ε maximal d'une telle tache est lié au pouvoir de séparation de l'½il de l'observateur, qui est lié non seulement à la taille de la tache mais aussi à la distance à laquelle se situe l'observateur : plus l'observateur est éloigné, plus il est difficile de distinguer une petite tache d'un « vrai » point. La valeur de cet ε maximal n'est pas universelle, car elle dépend in fine de l'affichage de la photo (sur écran ou en tirage papier) et de la manière dont on regarde cette photo : il sera par exemple plus facile de remarquer un flou en regardant de près une image tirée en grand format qu'en regardant de loin une image tirée en petit format.

La profondeur de champ

D'après l'article de Wikipedia sur la Profondeur de champ, les limites de distance où les objets donneront une image considérée comme nette, une fois choisie un valeur ε maximale sont

L = l / (1 ± εl/df)

Les objets dont la distance est située entre ces limites auront une image considérée comme nette, car la tache de diamètre ε est trop petite pour être distinguée d'un « vrai » point net. On remarque que pour photographier un objet donné situé à une distance l en utilisant un objectif de distance focale f donnée, ces deux valeurs limites ne dépendent que du diamètre de la pupille, et pas du tout de la taille du capteur de l'appareil photo. Plus précisément, si les pixels du capteur sont plus grands que ε il n'y aura aucun flou car la tache circulaire sera contenue dans un seul pixel. Si les pixels sont plus petits que ε mais que les pixels à l'affichage de la photo (sur écran ou sur papier) sont plus grands que la tache circulaire, alors il n'y aura aucun flou à l'affichage, mais on pourra voir le flou en zoomant dans l'image (ce qui revient à dire que les pixels d'affichage deviennent plus petits que la tache circulaire).

Le nombre d'ouverture et la focale équivalente

La taille d de la pupille est exprimée dans la pratique non pas en millimètres, mais en fraction 1/N de la distance focale de l'objectif : d = f / N. N est le nombre d'ouverture et vaut donc N = f / d.

Si considère qu'en utilisant un objectif de distance focale f sur un capteur de taille différente on a une distance focale équivalente feq = kf, alors on peut écrire

N = feq / kd

où k est appelé « crop factor », soit

kN = feq / d

En introduisant la notion de nombre d'ouverture équivalent Neq défini par Neq = kN, la formule précédente devient

Neq = feq / d

qui est a la même forme que la définition du nombre d'ouverture, mais en utilisant le nombre d'ouverture équivalent et la focale équivalente.

[ Posted on September 13th, 2019 at 18:54 | 2 comments | ]

Tuesday, September 10th, 2019

Optique photo 1: l'angle de champ

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Le modèle simplifié

optique_photo_1

On peut simplifier un objectif d'appareil photo en le considérant comme une lentille mince de centre O et de distance focale f. L'axe optique de la lentille passe par O et est perpendiculaire à cette dernière. Les points F et F', situés de part et d'autre de la lentille à une distance f sont les points focaux de cette dernière. L'objet AB, situé à une distance l de la lentille donne alors une image A'B' sur le capteur de l'appareil photo. La hauteur de l'objet est h et la hauteur de l'image est h'.

Les règles de l'optique géométrique sont simples :

  • les rayons lumineux passant par le centre O de la lentille ne sont pas déviés, donc AA' et BB' sont des lignes droites ;
  • les rayons lumineux qui arrivent sur la lentille parallèlement à l'axe optique ressortent de la lentille en passant par le point focal F', tel le rayon BCB' ;
  • les rayons lumineux qui arrivent sur la lentille en passant par le point focal F ressortent parallèlement à l'axe optique, tel le rayon BDB'.

L'angle de champ

L'angle sous lequel l'objectif voit l'objet AB est l'angle θ. On a tan θ = h / l et tan α = h / (l - f) =  h' / f. On en déduit que tan θ = (l - f)h' / lf, que l'on peut simplifier (lorsque f est négligeable devant l) en tan θ = h' / f.

Si on considère que l'image A'B' et son symétrique (qui n'est pas représenté sur le diagramme) sont ensemble suffisamment grands pour couvrir l'intégralité de la diagonale du capteur, on sait que la hauteur h' de l'image représente la moitié de la diagonale d du capteur. Cela signifie que l'angle θ est la moitié de l'angle de champ du système objectif-capteur. On a alors

tan(angle de champ / 2) = d / 2f

Ceci montre que l'angle de champ dépend seulement de la distance focale de l'objectif et de la taille du capteur (lorsque f est négligeable devant l, soit en pratique lorsque la distance à l'objet est au moins dix fois plus grande que la distance focale).

Angle de champ et taille de capteur

Pour deux capteurs de tailles différents et avec un objectif donné, le rapport des tangentes des demi-angles de champ est égale au rapport des tailles des capteurs. Pour des angles de champ de moins de 53° (c.-à-d. lorsque la valeur de la tangente est proche de la valeur de l'angle, en radians), c'est à dire lorsque la distance focale est plus grande que la diagonale du capteur, on peut faire l'approximation que le rapport des angles de champ est égal au rapport des tailles des capteurs, avec une erreur de moins de 10%, soit

angle1 / angle2 = diagonale1 / diagonale2

Ainsi par exemple un capteur deux fois plus grand qu'un autre capteur donnera un angle de champ deux fois plus grand lorsque ces capteurs sont munis d'objectifs de même distance focale.

Si on veut une approximation qui fonctionne aussi pour de grands angles, il devient nécessaire de comparer les tangentes des demi-angles de champ, par exemple

tan(angle1 / 2) / tan(angle2 / 2) = diagonale1 / diagonale2

ou de faire intervenir les arctangentes, par exemple

angle1 / angle2 = arctan(diagonale1 / 2f) / arctan(diagonale2 / 2f)

ce qui est nettement moins pratique à évaluer de tête.

La distance focale équivalente

Supposons que l'on a un capteur de référence dont la diagonale est dref (par exemple un capteur 24×36 mm) et un objectif de distance focale f.

Lorsqu'on utilise cet objectif avec un autre capteur dont la diagonale est d, on a un angle de champ θ défini par

tan(θ / 2) = d / f

On veut alors savoir quelle serait la distance focale équivalente feq d'un objectif fictif donnant le même angle de champ θ si on utilisait cet objectif fictif avec le capteur de référence. On a

tan(θ / 2) = d / f =  dref / feq

et donc

feq = f × dref / d

(cette valeur est correcte si f est négligeable par rapport à l et par rapport à ld / dref).

Comparée à l'angle de champ, le calcul de la distance focale équivalente n'est pas limitée à des angles de champ suffisamment petits. La distance focale équivalente fait cependant appel à un facteur caché, la taille du capteur de référence.

[ Posted on September 10th, 2019 at 22:47 | 2 comments | ]

Wednesday, September 4th, 2019

CAPTCHA

Categories: [ Blog ]

For years, the comments were systematically rejected on the blog because most of them were spam, and I didn't have a good way of filtering them out. A CAPTCHA would have been a solution, but I read that the ones based on warped text are easily defeated, and I didn't want to bother with images anyway.

I recently rediscovered the idea of a CAPTCHA based on arithmetics, which I now have implemented. The poster of a comment must do a simple arithmetics operation involving two single digit numbers and one operator. It should not be difficult to defeat, but arithmetics CAPTCHAs are apparently uncommon, so it is likely that most bots don't implement such solvers. It has already repelled a couple of spam comments today.

[ Posted on September 4th, 2019 at 22:34 | no comment | ]

Trackback Address

https://weber.fi.eu.org/blog/Blog/captcha.trackback

Comments

No comment

Monday, August 12th, 2019

Roulette et Martingale

Translation: [ Google | Babelfish ]

Categories: [ Science ]

Supposons qu'on joue à la roulette dans un casino. La roulette est honnête, donc tous les chiffres ont la même probabilité de sortir. Cette roulette comporte 18 numéros rouges, 18 numéros numéros noirs et un zéro qui n'est ni rouge ni noir. Les paris se font par tranche de 1 Euro, et sont limités à 100 Euros. On entre au casino avec 127 Euros en poche, et on parie toujours sur le rouge et on ne réinvestit pas ce qu'on a gagné, c'est à dire qu'on arrête de jouer une fois qu'on a perdu les 127 Euros de départ.

À chaque jeu on a donc p = 18/37 chances de gagner (soit un peu moins d'une chance sur deux).

Si on fait n = 127 paris de 1 Euro, la probabilité de gagner k fois (0 <= k <= n) est de P(X = k) = Comb( n, k) p k (1 - p) n - k (il s'agit d'une Loi binomiale). Les gains après k victoires sur n parties sont de 2 k - n. On peut donc calculer la somme des P(X = k) pour tous les k tels que 2 k - n > 0, ce qui donne la probabilité de quitter le casino avec en poche plus d'Euros que lorsqu'on y est entré. Cette probabilité est de 0,38, c'est à dire qu'on a 38% de chance de quitter le casino avec au moins 128 Euros et au plus 254 Euros. Cela signifie aussi qu'on a 62% de chance de n'avoir rien gagné, voire perdu tout ou partie des 127 Euros initiaux. En fait, on peut s'attendre, en moyenne, à perdre 3,43 Euros.

Jouer une martingale consiste à doubler la mise si on perd, afin que le gain couvre les pertes passées. La table de roulette ayant une limite de 100 Euros, on peut donc miser au plus m = 7 fois de suite en doublant la mise à chaque jeu, soit 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 Euros (ça tombe bien, c'est justement la somme qu'on avait en entrant au casino). La probabilité de gagner au bout de i jeux (donc de perdre i - 1 fois puis de gagner une fois) est P(X = i) = (1 - p) i - 1 p (il s'agit d'une Loi géométrique). On peut donc calculer la somme de ces probabilités pour i = 1 … m, qui représente la probabilité de gagner 1 Euro en utilisant la martingale. Cette probabilité est de 1 - (1 - p) m = 0,99. Cela signifie qu'on a 99% de chance de gagner 1 Euro, et donc 1% de chance de perdre 127 Euros. On peut donc s'attendre à perdre en moyenne 0,21 Euro.

Si on joue la martingale plusieurs fois de suite aussi longtemps que l'on ne perd pas, on peut espérer gagner à répétition, mais la probabilité de ne jamais perdre diminue à mesure que l'on joue (il s'agit encore une fois d'une loi géométrique, cette fois avec avec p = 0,99). Si on parvient à gagner en jouant la martingale au moins 128 fois de suite, alors on est certain qu'au moment où la chance tourne et que l'on perd, on ne perd que 127 Euros, et donc qu'on quitte le casino avec en poche au moins 1 euro de plus que lorsqu'on y est entré. Cette probabilité est de 0,298. Cela signifie qu'on a 29,8% de chance de sortir du casino avec au moins 128 Euros en poche. Cela signifie aussi qu'on a 70,2% de chance de perdre entre 0 et 127 Euros. En fait, on peut s'attendre à perdre en moyenne 21,8 Euros. Si on compare cette méthode avec la précédente qui consiste à miser 127 fois 1 Euro sur le rouge, on voit que le chances de ne pas perdre d'argent sont plus élevées si on n'utilise pas la martingale, et que les gains moyens sont moins mauvais lorsqu'on n'utilise pas la martingale (ils sont cependant toujours négatifs, c'est à dire qu'on y perd toujours de l'argent, en moyenne).

Jouer la martingale a cependant une utilité : la probabilité de gain élevé est plus grande avec la martingale que sans. Par exemple la probabilité de gagner au moins 10 Euros est de 11,6% sans martingale et 27,1% avec la martingale. Pour 20 Euros ou plus, la probabilité est d'à peine 1.9% sans martingale et de 24,7% avec la martingale, et on a encore environ 10% de chances de gagner au moins 115 Euros avec la martingale alors que cette probabilité est de moins d'une sur cent milliards sans martingale.

[ Posted on August 12th, 2019 at 07:31 | no comment | ]

Trackback Address

https://weber.fi.eu.org/blog/Science/roulette_et_martingale.trackback

Comments

No comment

Saturday, June 22nd, 2019

Nouvelle table

Translation: [ Google | Babelfish ]

Categories: [ Cooking/Nouvelle cuisine ]

nouvelle_cuisine_2019-06-22

[ Posted on June 22nd, 2019 at 13:02 | no comment | ]

Trackback Address

https://weber.fi.eu.org/blog/Cuisine/Nouvelle_cuisine/nouvelle_table.trackback

Comments

No comment